کانال تلگرامی ما                                                        سایت رسمی مهندس بی اذیت

ترانزیستور یکی از مهمترین قطعات الکترونیکی می‌باشد. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه رسانایی مانند سیلیسیم و ژرمانیم ساخته می‌شود. یک ترانزیستور در ساختار خود دارای پیوندهای نوع N و نوع P می‌باشد.

ترانزیستورهای جدید به دو دسته کلی تقسیم می‌شوند: ترانزیستورهای اتصال دوقطبی (BJT) و ترانزیستورهای اثر میدانی (FET). اعمال جریان در BJTها و ولتاژ در FETها بین ورودی وترمینال مشترک رسانایی بین خروجی و ترمینال مشترک را افزایش می‌دهد، از اینرو سبب کنترل جریان بین آنها می‌شود. مشخصات ترانزیستورها به نوع آن بستگی دارد.

لغت «ترانزیستور» به نوع اتصال نقطه‌ای آن اشاره دارد، اما انی سمبل قدیمی با سمبل‌هایی را کردند که اختلاف ساختار ترانزیستور دوقطبی را به صورت دقیقتر نشان می‌داد، اما این ایده خیلی زود رها شد.[نیازمند منبع]

در مدارهای آنالوگ، ترانزیستورها در تقویت کننده‌ها استفاده می‌شوند، (تقویت کننده‌های جریان مستقیم، تقویت کننده‌های صدا، تقویت کننده‌های امواج رادیویی) و منابع تغذیه تنظیم شده خطی. همچنین از ترانزیستورها در مدارات دیجیتال بعنوان یک سوئیچ الکترونیکی استفاده می‌شود، اما به ندرت به صورت یک قطعه جدا، بلکه به صورت بهم پیوسته در مدارات مجتمع یکپارچه بکار می‌روند. مداراهای دیجیتال شامل گیت‌های منطقی، حافظه با دسترسی تصادفی (RAM)، میکروپروسسورها و پردازنده‌های سیگنال دیجیتال (DSPs) هستند.

ترانزیستور می‌تواند به عنوان سوییچ نیز کار کند. ترانزستور سه پایه دارد.

محتویات

۱ ساختمان ترانزیستور
۲ اهمیت
۳ مزایای ترانزیستورها بر لامپ‌های خلاء
۴ تاریخچه
۵ کاربرد
۶ عملکرد
۷ انواع
۷.۱ ترانزیستور دوقطبی پیوندی
۷.۲ ترانزیستور پیوند اثر میدانی (JFET)
۷.۲.۱ انواع ترانزیستور پیوندی
۷.۲.۲ ساختمان ترانزیستور پیوندی
۷.۲.۳ طرز کار ترانزیستور پیوندی
۸ شیوهٔ اتصال ترانزیستورها
۸.۱ اتصال بیس مشترک
۸.۲ اتصال امیتر مشترک
۸.۳ اتصال کلکتور مشترک
۸.۴ ترانزیستور اثر میدان FET
۸.۴.۱ ساختار و طرز کار ترانزیستور اثر میدانی – فت
۹ جستارهای وابسته
۱۰ پیوند به بیرون
۱۱ منابع

ساختمان ترانزیستور

BJT از اتصال سه لایه بلور نیمه هادی تشکیل می‌شود. لایه وسطی بیس(base)، و دو لایه جانبی، یکی امیتر(به انگلیسی: emitter) و دیگری کلکتور(به انگلیسی: collector) نام دارد. نوع بلور بیس، با نوع بلورهای امیتر و کلکتور متفاوت است.معمولاً میزان ناخالصی در امیتر بیشتر از دو لایه دیگر وهمچنین عرض لایه بیس کمتر و عرض لایه کلکتور بیشتر از لایه های دیگر است.[۱]

دریک ترانزیستور دوقطبی، لایه امیتر یا گسیلنده بیشترین مقدار ناخالصی را دارد. که الکترونها از امیتر به سوی لایه کلکتور که ناخالصی کمتری دارد، گسیل داده می شود.[۲]
اهمیت

ترانزیستور از سوی بسیاری بعنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده‌است، در رتبه بندی از لحاظ اهمیت در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال کلیدی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعه امروز متکی به قابلیت آن برای تولید انبوه که از یک فرایند (ساخت) کاملاً اتوماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است استفاده می‌کند. اگرچه میلیون‌ها ترانزیستور هنوز تکی (به صورت جداگانه) استفاده می‌شوند ولی اکثریت آنها به صورت مدار مجتمع (اغلب به صورت مختصر IC و همچنین میکرو چیپ یا به صورت ساده چیپ نامیده می‌شوند) همراه با دیودها، مقاومت‌ها، خازن‌ها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک ساخته می‌شوند. یک گیت منطقی حاوی حدود بیست ترانزیستور است در مقابل یک ریزپردازنده پیشرفته سال ۲۰۰۶ که می‌تواند از بیش از ۷/۱ میلیون ترانزیستور استفاده کند (ماسفت‌ها)[۱].

قیمت کم، انعطاف پذیری و اطمینان از ترانزیستور یک قطعه همه کاره برای وظایف غیرمکانیکی مثل محاسبه دیجیتال ساخته‌است. مدارات ترانزیستوری به خوبی جایگزین دستگاه‌های کنترل ادوات و ماشین‌ها شده‌اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانه‌ای که عمل کنترل را انجام می‌دهد اغلب ارزان تر و موثرتر از طراحی مکانیکی معادل آن می‌باشد.

بعلت قیمت کم ترانزیستورها و ازاینرو رایانه‌ها گرایشی برای دیجیتال کردن اطلاعات وجود دارد. با رایانه‌های دیجیتالی که توانایی جستجوی سریع، دسته بندی و پردازش اطلاعات دیجیتال را ارائه می‌کنند، تلاش بیشتری برای دیجیتال کردن اطلاعات شده‌است. در نتیجه امروزه داده‌های رسانه‌ای بیشتری به دیجیتال تبدیل می‌شوند، در پایان توسط رایانه تبدیل شده و به صورت آنالوگ در اختیار قرار می‌گیرد. تلویزیون، رادیو و روزنامه‌ها چیزهایی هستند که تحت تاثیر این انقلاب دیجیتال واقع شده‌اند.
مزایای ترانزیستورها بر لامپ‌های خلاء

قبل از گسترش ترانزیستورها، لامپ‌های خلاء (یا در UK لامپ‌های ترمیونیک یا فقط لامپ‌ها) قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای کلیدی که به ترانزیستورها اجازه جایگزینی با لامپ‌های خلاء سابق در بیشتر کاربردها را داد در زیر آمده‌است:

اندازه کوچک تر (با وجود ادامه کوچک سازی لامپ‌های خلاء)
تولید کاملاً اتوماتیک
هزینه کمتر (در حجم تولید)
امکان ولتاژ کاری پایین تر (اما لامپ‌های خلاء در ولتاژهای بالاتر می‌توانند کار کنند)
نداشتن دوره گرم شدن (بیشتر لامپ‌های خلاء به ۱۰ تا ۶۰ ثانیه زمان برای عملکرد صحیح نیاز دارند)
تلفات توان کمتر (نداشتن توان گرمایی، ولتاژ اشباع خیلی پایین)
قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر(اگرچه لامپ‌های خلاء از نظر الکتریکی مقاوم ترند. همچنین لامپ خلاء در برابر پالس‌های الکترومغناطیسی هسته‌ای (NEMP) و تخلیه الکترواستاتیکی (ESD) مقاوم ترند.
عمر خیلی بیشتر (قطب منفی لامپ خلاء سرانجام ازبین می‌رود و خلاء آن می‌تواند آلوده بشود)
فراهم آوردن دستگاه‌های مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلاء قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست)
قابلیت کنترل جریان بالا (ترانزیستورهای قدرت بریای کنترل صدها آمپر در دسترسند، لامپ‌های خلاء برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند)
میکروفونیک بسیار کمتر (لرزش می‌تواند با خصوصیات لامپ خلاء تلفیق شود، به هر حال این ممکن است در صدای تقویت کننده‌های گیتار شرکت کند).

تاریخچه
نماد ترانزیستوردر یک پیاده رودر دانشگاه آویرو ، کشور پرتغال

اولین حق ثبت اختراع ترانزیستور اثرمیدان در سال ۱۹۲۸ در آلمان توسط فیزیک دانی به نامJulius Edgar Lilienfeld ثبت شد، اما او هیچ مقاله‌ای در باره قطعه‌اش چاپ نکرد و این سه ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال ۱۹۳۴ فیزیکدان آلمانی دکتر Oskar Heil ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده‌است، اما بعداً کارهایی در دهه ۱۹۹۰ نشان داد که یکی از طرح‌های Lilienfeld کار کرده و گین قابل توجه‌ای داده‌است. اوراق قانونی از آزمایشگاه‌های ثبت اختراع بل نشان می‌دهد که Shockley و Pearson یک نسخه قابل استفاده از اختراع Lilienfeld ساخته‌اند، در حالی که آنها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند. ترانزیستورهای دیگر، در ۲۳ دسامبر ۱۹47 Wiliam Shockley, John Bardeen و Walter Brattain موفق به ساخت اولین ترانزیستور اتصال نقطه‌ای در آزمایشگاه بل شدند. این کار با تلاش‌های زمان جنگ برای تولید دیودهای مخلوط کننده ژرمانیم خالص «کریستال» ادامه یافت، این دیودها در واحدهای رادار بعنوان عنصر میکسر فرکانس در گیرنده‌های میکروموج استفاده می‌شد. یک پروژه موازی دیودهای ژرمانیم در دانشگاه Purdue موفق شد کریستال‌های نیمه هادی ژرمانیم را با کیفیت خوب که در آزمایشگاه‌های بل استفاده می‌شد را تولید کند. سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم Bell را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آنها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه هادی کردند، اما دریافتند که کار ساده‌ای نیست. Bardeen سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام Brattain و Bardeen موفق به ساخت یک قطعه کاری شدند.

آزمایشگاه‌های تلفن بل به یک اسم کلی برای اختراع جدید نیاز داشتند: «سه قطبی نیمه هادی»، «سه قطبی جامد»، «سه قطبی اجزاء سطحی»، «سه قطبی کریستال» و «لاتاتورن» که همه مطرح شده بودند، اما «ترانزیستور» که توسط John R. Pierce ابداع شده بود، برنده یک قرعه کشی داخلی شد. اساس وبنیاد این اسم در یاداشت فنی بعدی شرکت رای گیری شد:

ترانزیستور، این یک ترکیب مختصر از کلمات «ترانسکانداکتانس» یا «انتقال» و «مقاومت متغیر» است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر می‌باشد و یک امپدانس انتقال یا گین دارد بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاه‌های تلفن بل- یاداشت فنی(۲۸ می۱۹۴۸)

در آن زمان تصور می‌شد که این قطعه مثل دو لامپ خلاء است. لامپ‌های خلاء هدایت انتقالی دارند بنابراین ترانزیستور مقاومت انتقالی دارد. و این اسم می‌بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد. و نام ترانزیستور پیشنهاد شد.

بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت وسترن‌الکتریک، شهر آلنتون در ایالت پنسیلوانیا قرار داد. نخستین ترانزیستورهای گیرنده‌های رادیو AM در معرض نمایش قرار گرفتند، اما در واقع فقط در سطح آزمایشگاهی بودند. به هر حال در سال ۱۹50 Shockley یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کاری این قطعه با ترانزیستور تک اتصالی کاملاً فرق می‌کند، قطعه‌ای است که امروزه به عنوان ترانزیستور شناخته می‌شود. پروانه تولید این قطعه نیز به تعدادی از شرکت‌های الکترونیک شامل Texas Instrument که تعداد محدودی رادیو ترانزیستوری بعنوان ابزار فروش تولید می‌کرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم کم رفع شدند.

اگرچه اغلب نادرست به Sony نسبت داده می‌شود، ولی اولین رادیو ترانزیستوری تجاری Regency TR-1 بود که توسط Regency Division از I.D.E.A (گروه مهنسی توصعه صنعتی) شهر Indianapolis ایالت Indiana ساخته شده و در ۱۸ اکتبر ۱۹۵۴ اعلام شد. آین رادیو در نوامبر ۱۹۵۴ به قیمت ۹۵/۴۹ دلار(معادل با ۳۶۱ دلار در سال ۲۰۰۵) به فروش گذاشته شد و تعداد ۱۵۰۰۰۰ از آن به فروش رفت. این رادیو از ۴ ترانزیستور استفاده می‌کرد وبا یک باتری ۵/۲۲ ولتی راه اندازی می‌شد.

هنگامیکه Masaru Ibuka، موسس شرکت ژاپنی سونی از آمریکا دیدن می‌کرد آزمایشگاه‌های بل ارائه مجوز ساخت شامل ریز دستورهایی مبنی بر چگونگی ساخت ترانزیستور را اعلام کرده بودند. Ibuka مجوز خرید ۵۰۰۰۰ دلاری پروانه تولید را از وزیر دارایی ژاپن گرفت و در سال ۱۹۵۵ رادیوی جیبی خود را تحت مارک سونی معرفی کرد.بعد از دو دهه ترانزیستورها به تدریج جای لامپ‌های خلاء را در بسیاری از کاربردها گرفتند و بعدها امکان تولید دستگاه‌های جدیدی از قبیل [مدارات مجتمع] و رایانه‌های شخصی را فراهم آوردند.

از شاکلی، باردین و براتین بخاطر تحقیقاتشان در مورد نیمه هادی‌ها و کشف اثر ترانزیستر با جایزه نوبل فیزیک قدردانی شد.
کاربرد

ترانزیستور دارای ۳ ناحیه کاری می‌باشد:

ناحیه قطع
ناحیه فعال(کاری یا خطی)
ناحیه اشباع

ناحیه قطع حالتی است که ترانزیستور در ان ناحیه فعالیت خاصی انجام نمی‌دهد. اگر ولتاژ بیس را افزایش دهیم ترانزیستور از حالت قطع بیرون امده و به ناحیه فعال وارد می‌شود در حالت فعال ترانزیستور مثل یک عنصر تقریباً خطی عمل می‌کند اگر ولتاژ بیس را همچنان افزایش دهیم به ناحیه‌ای می‌رسیم که با افزایش جریان ورودی در بیس دیگر شاهد افزایش جریان بین کلکتور و امیتر نخواهیم بود به این حالت می‌گویند حالت اشباع و اگر جریان ورودی به بیس زیاد تر شود امکان سوختن ترانزیستور وجود دارد. ترانزیستور هم در مدارات الکترونیک آنالوگ و هم در مدارات الکترونیک دیجیتال کاربردهای بسیار وسیعی دارد. در مدارات آنالوگ ترانزیستور در حالت فعال کار می‌کند و می‌توان از آن به عنوان تقویت کننده یا تنظیم کننده ولتاژ (رگولاتور) و… استفاده کرد. و در مدارات دیجیتال ترانزیستور در دو ناحیه قطع و اشباع فعالیت می‌کند که می‌توان از این حالت ترانزیستور در پیاده سازی مدار منطقی، حافظه، سوئیچ کردن و… استفاده کرد. به جرات می‌توان گفت که ترانزیستور قلب تپنده الکترونیک است.
عملکرد

ترانزیستور از دیدگاه مداری یک عنصر سه‌پایه می‌باشد که با اعمال یک سیگنال به یکی از پایه‌های آن میزان جریان عبور کننده از دو پایه دیگر آن را می‌توان تنظیم کرد. برای عملکرد صحیح ترانزیستور در مدار باید توسط المان‌های دیگر مانند مقاومتها و… جریان‌ها و ولتاژهای لازم را برای آن فراهم کرد و یا اصطلاحاً آن را بایاس کرد.
انواع

دو دسته مهم از ترانزیستورها ترانزیستور دوقطبی پیوندی (BJT) (Bipolar Junction Transistors) و ترانزیستور اثر میدان (FET) (Field Effect Transistors) هستند. ترانزیستورهای اثر میدان نیز خود به دو دستهٔ ترانزیستور پیوند اثر میدانی (JFET) و ماسفتها (Metal Oxide SemiConductor Field Effect Transistor) تقسیم می‌شوند.
ترانزیستور دوقطبی پیوندی
نوشتار اصلی: ترانزیستور دوقطبی پیوندی

در ترانزیستور دو قطبی پیوندی با اعمال یک جریان به پایه بیس جریان عبوری از دو پایه کلکتور و امیتر کنترل می‌شود. ترانزیستورهای دوقطبی پیوندی در دونوع npn و pnp ساخته می‌شوند. بسته به حالت بایاس این ترانزیستورها ممکن است در ناحیه قطع، فعال و یا اشباع کار کنند. سرعت بالای این ترانزیستورها و بعضی قابلیت‌های دیگر باعث شده که هنوز هم از آنها در بعضی مدارات خاص استفاده شود. امروزه بجای استفاده از مقاومت وخازن و… در مدارات مجتمع تماماً از ترانزیستوراستفاده می‌کنند.
ترانزیستور پیوند اثر میدانی (JFET)

در ترانزیستورهای ترانزیستور پیوند اثر میدانی (JFET) در اثر میدان، با اعمال یک ولتاژ به پایه گیت میزان جریان عبوری از دو پایه سورس و درین کنترل می‌شود. ترانزیستور اثر می‌دانی بر دو قسم است: نوع n یا N-Type و نوع p یا P-Type. از دیدگاهی دیگر این ترانزیستورها در دو نوع افزایشی و تخلیه‌ای ساخته می‌شوند. نواحی کار این ترانزستورها شامل «فعال» و «اشباع» و «ترایود» است این ترانزیستورها تقریباً هیچ استفاده‌ای ندارند چون جریان دهی آنها محدود است و به سختی مجتمع می‌شوند.
انواع ترانزیستور پیوندی

pnp

شامل سه لایه نیم هادی که دو لایه کناری از نوع p و لایه میانی از نوع n است و مزیت اصلی آن در تشریح عملکرد ترانزیستور این است که جهت جاری شدن حفره‌ها با جهت جریان یکی است.

npn

شامل سه لایه نیم هادی که دو لایه کناری از نوع n و لایه میانی از نوع p است. پس از درک ایده‌های اساسی برای قطعهٔ pnp می‌توان به سادگی آنها را به ترانزیستور پرکاربردتر npn مربوط ساخت.
ساختمان ترانزیستور پیوندی

ترانزیستور دارای دو پیوندگاه‌است. یکی بین امیتر و بیس و دیگری بین بیس و کلکتور. به همین دلیل ترانزیستور شبیه دو دیود است. دیود سمت چپ را دیود بیس _ امیتر یا صرفاً دیود امیتر و دیود سمت راست را دیود کلکتور _ بیس یا دیود کلکتور می‌نامیم. میزان ناخالصی ناحیه وسط به مراتب کمتر از دو ناحیه جانبی است. این کاهش ناخالصی باعث کم شدن هدایت و بالعکس باعث زیاد شدن مقاومت این ناحیه می‌گردد.

امیتر که به شدت آلائیده شده، نقش گسیل و یا تزریق الکترون به درون بیس را به عهده دارد. بیس بسیار نازک ساخته شده و آلایش آن ضعیف است و لذا بیشتر الکترونهای تزریق شده از امیتر را به کلکتور عبور می‌دهد. میزان آلایش کلکتور کمتر از میزان آلایش شدید امیتر و بیشتر از آلایش ضعیف بیس است و کلکتور الکترونها را از بیس جمع‌آوری می‌کند.
بازسازی اولین ترانزیستور جهان
طرز کار ترانزیستور پیوندی

طرز کار ترانزیستور را با استفاده از نوع npn مورد بررسی قرار می‌دهیم. طرز کار pnp هم دقیقاً مشابه npn خواهد بود، به شرط اینکه الکترونها و حفره‌ها با یکدیگر عوض شوند. در نوع npn به علت تغذیه مستقیم دیود امیتر ناحیه تهی کم عرض می‌شود، در نتیجه حاملهای اکثریت یعنی الکترونها از ماده n به ماده p هجوم می‌آورند. حال اگر دیود بیس _ کلکتور را به حالت معکوس تغذیه نمائیم، دیود کلکتور به علت بایاس معکوس عریض‌تر می‌شود.

الکترونهای جاری شده به ناحیه p در دو جهت جاری می‌شوند، بخشی از آنها از پیوندگاه کلکتور عبور کرده، به ناحیه کلکتور می‌رسند و تعدادی از آنها با حفره‌های بیس بازترکیب شده و به عنوان الکترونهای ظرفیت به سوی پایه خارجی بیس روانه می‌شوند، این مؤلفه بسیار کوچک است.
شیوهٔ اتصال ترانزیستورها
اتصال بیس مشترک

در این اتصال پایه بیس بین هر دو بخش ورودی و خروجی مدار مشترک است. جهت های انتخابی برای جریان شاخه‌ها جهت قراردادی جریان در همان جهت حفره‌ها می‌شود.
اتصال امیتر مشترک

مدار امیتر مشترک بیشتر از سایر روشها در مدارهای الکترونیکی کاربرد دارد و مداری است که در آن امیتر بین بیس و کلکتور مشترک است. این مدار دارای امپدانس ورودی کم بوده، ولی امپدانس خروجی مدار بالا می‌باشد.
اتصال کلکتور مشترک

اتصال کلکتور مشترک برای تطبیق امپدانس در مدار بکار می‌رود، زیرا برعکس حالت قبلی دارای امپدانس ورودی زیاد و امپدانس خروجی پائین است. اتصال کلکتور مشترک غالباً به همراه مقاومتی بین امیتر و زمین به نام مقاومت بار بسته می‌شود.
ترانزیستور اثر میدان FET
نوشتار اصلی: ماسفت

این ترانزیستورها نیز مانند Jfetها عمل می‌کنند با این تفاوت که جریان ورودی گیت آنها صفر است. همچنین رابطه جریان با ولتاژ نیز متفاوت است.

این ترانزیستورها دارای دو نوع PMOS و NMOS هستند که فناوری استفاده از دو نوع آن در یک مدار تکنولوژی CMOS نام دارد.

این ترانزیستورها امروزه بسیار کاربرد دارند زیرا به راحتی مجتمع می‌شوند و فضای کمتری اشغال می‌کنند. همچنین مصرف توان بسیار ناچیزی دارند.

به تکنولوژی‌هایی که از دو نوع ترانزیستورهای دوقطبی و Mosfet در آن واحد استفاده می‌کنند Bicmos می‌گویند.

البته نقطه کار این ترانزیستورها نسبت به دما حساس است وتغییر می‌کند. بنابراین بیشتر در سوئیچینگ بکار می‌روند.
ساختار و طرز کار ترانزیستور اثر میدانی – فت
نوشتار اصلی: ترانزیستور اثر میدانی

همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی‌کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی، جریان عبوری از FET کنترل می‌شود. به همین دلیل ورودی این مدار هیچ گونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی‌گذارد و امپدانس بسیار بالایی دارد.

فت دارای سه پایه با نام‌های درین D، سورس S و گیت G است که پایه گیت، جریان عبوری از درین به سورس را کنترل می‌نماید. فت‌ها دارای دو نوع N کانال و P کانال هستند. در فت نوع N کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می‌کند. FETها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن بدن نیز تحریک می‌گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.

نوع دیگر ترانزیستورهای اثر می‌دانی MOSFETها هستند (ترانزیستور اثر می‌دانی اکسید فلزی نیمه هادی – Metal-Oxide Semiconductor Field Efect Transistor) یکی از اساسی‌ترین مزیت‌های ماسفت‌ها نویز کمتر آنها در مدار است.

فت‌ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N با مالتی متر، نخست پایه گیت را پیدا می‌کنیم. یعنی پایه‌ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می‌توان پایه درین را از سورس تشخیص داد.



نظرات شما عزیزان:

نام :
آدرس ایمیل:
وب سایت/بلاگ :
متن پیام:
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

 

 

 

عکس شما

آپلود عکس دلخواه: